Infotech@Aerospace AlAA 2005-7143

26 - 29 September 2005, Arlington, Virginia

A Modern CORBA-Based Approach to Ad Hoc Distributed
Process Orchestrations Applied to MDO

Robert R. Ratcliff’
FutureTek Net Services, Austin, Texas, 78726

and

Stephen T. LeDoux', William W. Herling*
The Boeing Company, Seattle, Washington, 98124-2207

A Multidisciplinary Design Optimization (MDOPT) framework was developed for air
vehicle design and analysis. The developed MDOPT system contains a collection of
technology modules for performing optimization studies that can be configured and
controlled by a Graphical User Interface (GUI). A CORBA based command and control
layer called the Inter-domain Communication Facility (ICF) was developed for this
framework to allow the user to interactively create ad hoc workflows between remotely
distributed engineering processes running interactively or within batch queuing systems
such as PBS. An overview of the design of the ICF and related software technologies are
presented. The interaction of the ICF process flows with the MySQL-based Database
Management Facility (DMF) and the practical design considerationsrelated to the DMF are
also discussed. Finally, a sample optimization workflow that allows human interaction is
shown to demonstr ate the flexibility of the system.

I. Introduction

HI'S paper is intended to give a review of the MDOPT system with emphasis given to the architecture design

and of the ICF and DMF, funded under Air Force Contract F33615-98-2-3014, in addition to Boeing cost match
funds. The initial period of development was established with contract activity beginning in September 1998 and
ending April 2002. Development of MDOPT has continued since then with Boeing internal funding.

The main objective for the MDOPT system was to provide a MDO framework that enabled significant
reductions in design cycle times and costs, as well as, significant improvements in design quality for complex air
vehicle configurations. The aim of development was to produce a solution that would gain acceptance and provide
real-world usefulness, supporting tradeoff analyses to balance the demands of product performance and product cost
as an objective function, without compromising flight safety. There were several system design goals that defined
the operational characteristics of MDOPT to support these goals. A modular and open computing architecture was,
in particular, crucia for the acceptance of MDOPT by a heterogeneous community of users. This design goal
promotes the attainment of several key system characteristics: scalability — to enable the user to frame application
of the system to fit available schedule requirements and computing resource availabilities for the optimization
problem; flexibility — to enable the user to choose from a variety of solvers and other computer aided engineering
tools, and extensibility — to enable the system to grow through refinement of existing capabilities and the
incorporation of new ones (e.g., the incremental incorporation of additional analysis disciplines or enhanced
geometric complexity.)

MDOPT can be described from two viewpoints, the system architecture described in Figure 1 and the system
process described in Figure 2 below. The system is comprised of the six main modules as shown, where the
executive or MDO Manager (MDOM) controls the overall processes and provides common utilities necessary for

" Senior Specialist Engineer, Member AIAA
" Senior Specialist Engineer, Member AIAA
* Associate Technical Fellow, Senior Member AIAA
1

American Institute of Aeronautics and Astronautics

Copyright © 2005 by The Boeing Company and FutureTek Net Services LLC. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

general system functionality. The user interacts primarily with the system through the Graphical User Interface
(GUI), but command line interfaces are also available to access most of the MDOPT functionality.

Technology discipline domains provide analysis services of candidate configuration geometries. The current
MDOPT implementation provides support for three technology domains: aerodynamics, structures and stability and
control (S&C). The Inter-domain Communication Facility (ICF) provides the underlying process control. It is a
CORBA based communication layer composed of clients and servers written mainly in object-oriented incrTcl?
scripts leverage the Combat® Tcl to CORBA* bindings and layered upon the MICO® CORBA ORB library and
standard CORBA services. Transfer of user input information is achieved through a master control document that
uses a namelist-style (i.e. name=list of values) format. This document represents the canonical format of the required
inputs. A common parser is used to extract the required parameters from the document and various converters are
available to automatically create the input decks for the various integrated processes. The master control document
also acts as the conduit between the GUI, the ICF, the Database Management Facility (DMF) and the discipline
domain control scripts. All persistent user data, i.e. data created by the system, is stored into a MDOPT database via
DMF utilities and MY SQL®, with the exception of large binary computational model files (e.g. flow solver restart
and grid files), which are maintained separately within the system directory structure.

During interactive execution, the user inputs the required data via the GUI that updates the master control
document accordingly and directs the conduct of the optimization through the ICF. At several points within the
optimization process the user has access to the database and may input data manually for given discipline data or for
aparticular design perturbation analysis as represented by the man in the loop figures.

Open System Architecture
1) MDO Manager
Graphical User Problem Definition Response Geometry
Interface (GUI) Facility Surface Generation Management ossible
Optimization Performance Output Process Man in
Module Constraint Module Generator Controller Loop
= Data and
ﬁ ﬁ Control
Information
2) Inter-Domain Communication Facility (ICF) ’
Aerodynamics S&C ; Structures Future
Domain A Domain ¥- Domain Domains

Figure 1. Diagram of the System Architecture.

The top-level components of the MDOPT system and optimization steps are shown in Figure 2. This illustration
provides a general outline of the steps required in performing an optimization with MDOPT. Following a clockwise
direction from starting from the top left corner, first the geometry isinput in to the system and surface grids or lofts
are created for the input geometry. Next the design variables are defined and a design of experiments (DOE)
experiment is selected. Geometry perturbations are created for each design point in the experiment and analyzed
with each of the discipline analysis codes. Geometric constraint checks are performed and stored into the database.
Next Interpolated response surfaces (IRS), or surrogates, are generated for the constraints and objective functions.
Optimization is then performed on the surrogates to obtain the final optimum geometry and design variable vector.

Once initia user inputs have been completed the system can proceed in an automated fashion. Parall€elization of
the optimization process has been implemented within most domains providing a capability to utilize large scale,
multiple CPU computersin a computationally efficient manner.

2

American Institute of Aeronautics and Astronautics

The initiadl MDOPT system release provides a 3-D vehicle shape (outer mold line, OML) design optimization
capability for wing alone, wing in the presence of a body, or wing with body and a single longitudina controller
(canard or conventional horizontal tail). Global or local direct driven design optimizations may be completed using
a variety of multidisciplinary objective and constraint functions, including mission performance metrics,
aerodynamic characteristics, weight trends and stability and control characteristics.

Geometry Input Surface Gridding Design Experiment

Output Final Surface

L]

Optimization
Metho«ds
Iy X¥ X¥
| S LB L
"M 11 11
is 11 1»

L]

Approximate Objective Function Flow Solver
Modeling and Constraints Ly

MDOPT

|

'Z;'" BOEING -

Figure2. MDOPT Process Overview

1. Inter-domain Communication Facility (ICF)

The ICF shown in Figure 5 is an enterprise-level framework that supports loosely and tightly coupled distributed
network access to engineering information and analysis services. The |CF supports arbitrary user-defined workflows
and complex binary data structures. It interoperates well with interactive processes initiated on SMP and clustered
comp7uting environments, as well as, processes initiated by batch queuing systems such as Portable Batch System
(PBS').

The architecture and associated technology selections for the ICF were mainly driven by the following
requirements: 1) Open-standards based (2 Interoperable with other standards-based implementations 3) Handles
arbitrary text or binary data efficiently 4) Supports flexible workflows including hierarchical and asynchronous
processes 5) Medium risk 6) Robust operation during long running processes 7) Multi-user support 8) Allowance for
man-in-the-loop interactions 9) Low cost 10) Ports to all supported Unix platforms and 11) Dovetails easily with the
rest of the MDOPT system.

A. Technologies Selection

1. Middleware Selection

Given that in a large distributed engineering environment each discipline maintains specialized domain
knowledge and might prefer control over their processes, one of the design goals of the ICF was to allow access to
these services without forcing each organization to relinquish control over their processes. The ICF is built upon the

3

American Institute of Aeronautics and Astronautics

foundation of the flexible, widely adopted, and stable CORBA* standard developed over the last decade. Presumably
by using a standard like CORBA engineering and finance departments providing information and analysis services
would be more likely to make the investment in exposing their services without the fear of vendor-lock-in or
continuous retooling caused by being early adopters of various fledgling communication frameworks. During the
development of the CORBA standard in the 90's, CORBA implementations had a history of being expensive, non-
interoperable, and overly complicated. With the stabilization of the standard in the late 90's and the current
availability of many compliant free and commercial implementations® (see Figure 4) with bindings for C, C++, Java,
Tcl, Python, Perl, and powerful developer-friendly scriptable solutions these growing pains have practically
disappeared. A current example of interoperability between three different ORBs written in three different languages
ispresented in Appendix A.

CORBA uses a fairly efficient binary protocol caled GIOP. GIOP is transport independent. The TCP/IP
implementation is called 110OP. The ORB takes care of the tedious details involved in converting machine dependent
data structures to flattened versions in the standardized binary format defined by the GIOP specification. It also
takes care of the basic network communication between client and server. A benefit of using a binary format is that
there is no impedance mismatch for text and binary data; it is al treated the same way. Any data structure that can
be described by IDL can be easily transmitted. Blobs of text or binary data can be described as binary sequences.
Small blobs can be passed with one method call while large blobs can be passed using a file iterator such as shown
in Figure 3.

fileObjectProvider
rr— FileObjectProvider
MDOPT::FileObjectProvider
client T
|
+oeiFlieObjeciiname: siring, chunk_size:unsigned jong). FileObject
+puitiocalFlie: siring, removeProvier. FlieObjectProvider, remoieF e string). jong ’ gE'fFﬁIEODjECf{S(H.’EW?S.'gned fong): FllgCbject
+geifremoteProvider: FileChjectProvider, remoteF lie: string, localFle: string). long fileObiect
e jec

! 1.1

| | FileOhject
| o=

I

!

Base I_T_l
|
|
I

interface e — — — — — —
MDOPT::FileObject

z: ge{Fﬁ'Ie(sm'ng).'FJIeI{efjlafor

+thunkSize: unsigned long filelterator

o= Filelterator

N

2.1:

|

+getSizer).jong |
+getiame).string :
|

|

+getFiie(fiiename: string). Fllefterator
+uFlie(fliename: string) Fllefterator
T s —— - - = ———— — — — —

|
|
]

Base i
interface while{bytes eft)
MDOPT: Filelterator

|
|
|
|
|
|
+ChunkSize; unsigned long ER FE&‘G’CF’?UHF(()'E*V{ESEQ‘
|
|
|
|

+readiChunk() ByieSeq
HwriteChunkioaia ByteSeq) void
+pet TolaiBytes T ransferred) iong

K

Figure 3. A class and sequence diagram for an examplefileiterator design

The CORBA standard also defines a number of vertical services such as COSS Naming, Interface Repository,
Event Service, Notification Service, Trading Service, etc. Many of the available CORBA ORB implementations also
bundle a number of the standard services with the ORB. One of the byproducts of standards-driven development is
that the best of breed implementation of a given service implementation can be chosen without much or any
retooling of the infrastructure. The ability to switch out implementations can be important when a given project
begins to scale beyond the performance capabilities of a given implementation.

The CORBA ORB implementations chosen for the current ICF are MICO® and Combat®. MICO has proven to be
very portable and reliable. We have successfully ported MICO and Combat to the Cray and have had success
running on Solaris, IRIX, Linux and Windows operating systems. Interestingly, MICO has reported to run on a
PocketPC and the embedded Linux OS uCLinux®. MICO is aso well supported both commercially and by the user
community. Combat was selected since it was the best way to interface with Tcl using CORBA. As shown in
Appendix A, it isalso very easy to develop a CORBA client/server applications using Combat.

4

American Institute of Aeronautics and Astronautics

ORB Web Location Programming CORBA Open | Free
Name L anguage Bindings Specifi_cation Source
Compliance
MICO http://www.mico.org C++, Tdl 23| Yes Yes
Combat http://www.fpx.de/Combat Tcl <23]| Yes Yes
Orhit http://orbit.sourceforge.net C, C++, Tcl, Perl, <23| Yes Yes
Python

Fnorb http://fnorb.sourceforge.net Python >20| Yes Yes
Tao http://www.theaceorb.com/ C++ 26| Yes Yes
OpenORB | http://openorb.sourceforge.net | Java 25| Yes Yes
JacORB http://www.jacorb.org Java >23 | Yes Yes
JOK 1.5 http://java.sun.com Java <23]| Yes Yes
OmniOrb | http://omniorb.sourceforge.net | C++, Python 26 | Yes Yes
Orbacus http://www.orbacus.com C++, Java >25]| Yes No
Visibroker | http://www.borland.com C++, Java >25| No No
Orbix http://www.iona.com C++, Java >25| No No

Figure 4. Examples of current commercial and open source CORBA implementations

2. Primary Language Selection

The MDOPT project is an incremental extension of the 3DOPT*™ project that began in 1995. The GUI for
3DOPT was developed using the Tcl language; the object oriented extension incrTcl™ and the Tk and Tix widget
sets. Tcl/Tk was selected for the GUI development given the rapid development times demonstrated for Tcl/Tk-
based GUIs; the accompanying rich set of extensions and widget sets; the immediate portability of the GUI to the
various Unix platforms and the ability to catch and display errors without crashing. The resulting GUI was also easy
to modify by aerospace engineers who might not have had training in X-Windows and C++ programming. Tcl still
enjoys significant support in the user community and it can be extended using C, C++ or Java™. Given that the GUI
had to communicate with the ICF, the successful experience of our Tcl development over the years, and the
availability of Combat, it was natural to pick Tcl as the language for the rapid development of many of the ICF
services. Given that there are CORBA bindings available for C++ and Java as well, performance-driven or
distributed web-based applications using applets or Java Web Start can be developed in the future as the need arises
without reworking the framework.

B. Architectural Overview

Referring to Figure 5, the ICF is a collection of specialized services that communicate with each other using
CORBA. It leverages three of the standard verticall CORBA services bundled with the MICO CORBA distribution:
Naming Service, Event Service and Interface Repository.

The COSS Naming Service is used as a “white pages’ style lookup of the currently running processes. The
processes are organized hierarchically and can be keyed off a given process owner ID. The GUI only displays those
services associated with the current process owner.

The interface repository (IR) stores the functional interfaces and data types defined by the IDL of the available
|CF services.

5

American Institute of Aeronautics and Astronautics

\:: : spgE [

o

e

amp 30

[Tad=
Iwri
CORBA
Communication
Layer
— | = N L i :
B |Service ‘ ! e
ey | Service
e S S \.merraceWrapper{ S Service, |
(f Jo 4] ~\\ | INnTarrarea | void b'-‘-’l-‘\h | //‘é_;i/";/l - . W
4> |Repository | _boolean iy | HJ &7 i
\ 4 — > L - =/

Figure5. Architectural overview of the ICF

The GUI dynamically queries the IR for these definitions and provides them graphically to the user to alow him to
define aworkflow in the script editor. The ICF clients and servers built using Combat retrieve the required interface
and data type definitions at run-time from the interface repository. The IR is also relied upon for code generation of
incrTcl skeleton code for new ICF services.

The CORBA Event Service** provides an asynchronous publish and subscribe messaging capability similar in
behavior to aradio station broadcast. Clients (providers) can push information to a given channel on the event server
and numerous interested consumers will receive the information. A separate event channel is created for each
process owner and design case combination. The ICF leverages this capability to allow longer running processes to
broadcast their status and analysis output information to multiple GUI clients. A given GUI can tap into the
information stream at any point in time to view the current state of the MDO processes. The system was designed
such that no state information was stored within the GUI thus allowing the GUI to be shutdown and restarted at will
without any impact on process execution; the GUI merely provides a portal to the executing process flow. Multiple
GUIs can aso be connected simultaneoudly from different computers. Currently, it is the GUI’s responsibility to
filter the messages sent by the various ICF services associated with the design case prior to displaying them to the
user.

Most of the ICF processes are designed to be autonomous CORBA compliant servers. This feature makes it easy
to choreograph arbitrary process flows between them by writing client code using any of the available CORBA
language bindings. As stated earlier, an innovative open-source binding for the Tcl language called Combat, written
by a German developer named Frank Pilhofer, was utilized to alow the user to script process flows from within the
MDOPT GUI as shown in Figure 6. By leveraging a mature full-featured language like Tcl, complex process flows
are flexibly supported in a more natural way than perhaps a custom language solution might allow.

6

American Institute of Aeronautics and Astronautics

ul BAPMADIT /Bloalbi Mie cfmlicmim: b i o bioe Cioe oo For 3 1% Moo /Deads e ST il Sam o 4™ sl 1=l
=] MOOFT imib—OisCipunany Gplin Zausn Sysisni 15f 3—0 Wi/ oouy/ 1 ainj & I2—iids =1
Be B Options Help
Dadanx MDC

MDOPT | Input | | Control

_w M Structures Objective Function

Optimization numuu-l—
Methods Viewing

=
[Registries
try corbadne:Sop=fulunespare] fuls

ulresparct futuretek.com
2004
rollers

Erasfault an fuburaspanc futuresk.com:
Ethoduies

BrAn_MDOFT_Description
Erbase
GHilelterator
EHleObject
B} Statuslistener

G StatusListeneriodel

rapper
EHARChilecunes
Grvailable Hosts
EHFunctions
SActive Processes
Lwrapper_1
Lstatus: idle
ErLamcher

EHScriptRunner
EHlient

EMiborker
EhJabiManager
HExeel Spriad Sheet
EHCoes| Prisdac tor

Close Module Modees

 Seript Window

for {seti0) (8l=2]) [Incri} [
sel outpud [${wrapper_1) ping]
nofify “$i:$output®

i

Hwrapper_1} plpaFrocess “whosm®
“wall $wrapper_1)
${wrapper_1) pipaFrocess “date” **

=

16:00 {wrapper_1) starting
Module wrapper_1 changed s
16:00 (default) output: 13
Mol e wrarnar 1 chanoed =

=
Run Update Step €3 Conteue X Clear ™ b Refieve
Shatus
16:00 (default) (1) for { set 1 0} { $i <2] | inece i} |
16:00 (default) (2} set output [§[wrapper_1] ping]
16:00 (default) (3) notify "§i:Soutput"
16:00 (default) (4})
16:00 {default) 0:1
16:00 {default) 1:1
16:00 (default) (8) §{wrapper_l} pipeProcess "whoami'
16:00 (wrapper_l) starting pipe Process for whoami with arguments=
Medule wrapper_1 changed status to Busy
16:00 {(default) output: 13319
16:00 (default) (7) wait §{wrapper_1}
Mzdule wrapper_1 changed status to Idla
16:00 (wrapper_l) mdopt
16:00 (wrapper_l) Process
16:00 (default) (8) §{wrap _'l 1 | |J|

starting pipe Pmce.as fm: whoami with arguments=

or date tegh nts=
with argume:

| Ma:f B8R Oheds cot 3008

Clear Messages Fiter Message: finished or was terninated

Figure 6. An example of defining a simple processflow in the ICF GUI

Combat was also used to create various |CF server processes. For instance, a service called the “Wrapper” was
developed to allow loosely coupled integration of existing engineering applications. As depicted in Figure 7, this
service executes and communicates with the desired application via a UNIX pipe. The Wrapper alows remote
control over the life-cycle of the launched application, redirects the standard output from the launched application to
the event server for broadcasting to the GUI, provides file transfer capabilities to any other Wrapper and status
information to be queried and broadcast.

remote method calls

*® File transfer to other
Wrapper Servers

® Status queries and

Event based processing of

® User application life cycle
management (Start, Stop)

asynchronous updates to GUI

Wrapper Server

Asynch I0 | Unix Pipe |

Unmodified Application

Combat/C++ Tcl Bindings

Tcl Library

Figure 7. Wrapper Server

7

American Institute of Aeronautics and Astronautics

Other ICF services shown in the class diagram in Figure 8 developed with Combat are the Controller, Launcher,
and Job Management system. The Controller provides a convenient fagade interface that exposes various factory
methods for generating instances of ICF Script Runners, Launchers, Wrappers and other services. All services can
be started manually from the command line as well.

interface interface
MDOPT::Base MDOPT::FileObjJectProvider
E;E o GetFlleObject
getiD put
getType get
pLENamelst A
getNamealist
|
\ |
interface interface interface StatusListener
MDOPT:DMF| |MDOPT::Controller MDOPT::Launcher StatusListeneriodel
_________ interface
MDOPT:Wrapper
A
VR
interface :
MDOPT.:ScriptRunner | A
_________ interface
MDOPT::JobManager ‘
uodatesert . b — — — — — — - - interface
openseriat “|MDOPT:Worker
gefSeript
run f
rerun
stop interface
Rl MDOPT:MiddleJobManager
step
continue
geiCurrentLineNumber
gefCurrentLine

Figure 8. Classdiagram of ICF services

The ScriptRunners are lightweight processes used by the GUI to execute and step through the ICF scripts
generated by the user. The GUI interacts with the Script Runner viathe ICF. The Script Runners execute within their
own thread within the Controller Server to avoid blocking the entire server during along running | CF script. One of
the benefits of running the scripts in a server process rather than within the GUI is that the GUI can be disconnected
as soon as the script isinitiated. An ICF script can aso be embedded in a non-GUI sub process and executed in-line
or via a ScriptRunner. (A serendipitous use of the Script Runner is a simple multi-user chat capability between
MDOPT GUIs.)

The Launcher Service is a simple server that starts registered 1CF services only on the machine on which it is
running. The Launcher Service is started on the remote machine by the Controller via standard remote shell or
manually by the user on the command line. A benefit of this service is that remote shell does not need to be available
on all the machines accessible to the ICF such as Windows computers or those with remote shell disabled. Starting
up new processes is also faster than using remote shell. The Launcher only starts trusted |CF processes that are
present in a configuration file.

8

American Institute of Aeronautics and Astronautics

interface
MDOPT::Base

+getID:string
+getType:string
+ping:short
+shutdown:void

L]

interface interface
MDOPT::ExcelServerFactory MDOPT::ExcelSpreadSheet

+getCostPredictor:CostPredictor +getCellByLocation:string

+getExcelSpreadSheet:ExcelSpreadSheet +getCellByName:string

+getStatus:StatusMessage +notify:void
+setCellByLocation:void

SpreadSheetNotFound +setCellByName:void

+setVisibility:void

interface
MDOPT::CostPredictor

+getTitle:string
+getTotalCost:double
+setNumberOfPassengers:void
+setPayload:void
+setRange:void
+setSweep:void
+setTOW:void
+setWingspan:void

Figure9. Class diagram of Excel Services

Microsoft Excel spreadsheets are significant sources of information from disciplines such as finance or airplane
weights. These spreadsheets can be accessed through the ICF in aloosely coupled or tightly coupled fashion. (A Tcl
extension called tcom™ is used to communicate programmatically with Microsoft Windows programs such as Excel
via COM.) In the first case, an instance of a generic ExcelSpreadSheet service that instantiates the specified
spreadsheet is created through the Excel ServerFactory service that is running on the PC where the spreadsheets are
located. The spreadsheet’s cell data are accessed by row and column addresses programmatically from within an
ICF script. This approach has the advantage that spreadsheets can be quickly integrated, but it can lead to a brittle
integration since the |CF scripts have to change any time a given field is moved to another cell location or it's name
changes.. Another supported approach that provides a tighter integration and more intuitive interface with the
spreadsheet is to create an extension of the ExcelSpreadSheet service through inheritance that exposes the
information via specific “getter” and “setter” methods with names patterned off the desired fields or cell aliases.
This allows the new service to shelter the developers of ICF scripts from structural changes in the spreadsheet.
Furthermore, the new service and the more intuitive methods will appear in the GUI once the new IDL isloaded into
the IR. The class diagram for this example is shown in Figure 9. An example of interacting with spreadsheet using
this latter approach is shown in Figure 10 and the accompanying sequence diagram is shown in Figure 11.

9

American Institute of Aeronautics and Astronautics

FCostPredictor

ErArchitectures

Ehfwvailable Hosts

EHrunctions

}string getCellByLocation (string =} (I
}string getCellByMame (siing name}

alolx

}string getiD
Lgetthe unigue Identifier for this se|
Fstring getTitle
Hiouble gelTotalCost
Hstring gelType

Get the most narrow class type for|

sHyoid notify (sting message)
}shor ping
Lsee if server is alive. Usage: ping

void setCellByLocation {string =) {lor

void selCellByName {string name] (s | Status Messages

D@8 @AY S RBD -kt BES e 0. | am
|l S0 -y EEEE €%, AARR -5 A,
|8) Bl Edi ew insart Fumat Toos [aia #ndow bel PagesSsup. Fowase Cocial il x|
—Script Window- C23 = -
set predictor [${excelF aciony} gelcostP) A B | [=] I E F [H T3
set originalCost [$predicior gefTotalCost] 1 |Shaot from the Hip Airplane Cost Prediction Program
nofify *original cost = $originalCost* 2
Fpredictor setPayload 300000 3 Value Factor Result
spredictor selsweep 35 4 Takeoff Weight 100000 $50,000,000.00
sat newCost [§predictor getTotalCost 5]
nofify *new cost = fnewCost* G Wingspan 100 00 $20,000,000.00
$predictor shutdown i
B |Sweep 5 047331472 F47.381 47
a
10 | Range 1000 00 10,000,000 00
11
12 |Number of Passengers 2 200 $20,000,000.00
AE]
14 Payload 300000 000 $300,000,000.00
15
Run | Update | Step g 15 I
11 |Tatal Cost $400.047 28147
[CEIEIEE L4l My

(et [hael) |
|m...no apchopes - . WOOCOHAE »-Z-A-==FE0 @
=

Hyoid setNumberOPassengers {long |

ault)
ault)
ault)
ault)
ault)
ault)
({default)
(default)
(default)
(default)

woid selWingspan (double wingspan)}

({default)
(default)
9 (default)

22:5
23:01 (costPredictor_5) Shutting dowm
removelod> costPredictor_5:futurelap:Dead

output : combat. obj_1

(2) set originalCost [spredictor getTotalCost]
output: 110199520.041

(3) notify "original cost = SoriginalCost"
original cost = 110199520.041

(4) §predictor setPayload 300000

(5) $predictor setBweep 35

(6) set newCost [$predictor getTotalCost]
cutput: 400047381.472

(7) notify "new cost = $newCost"

new cost = 400047381.472

(8) $predictor shutdown

script stopped

8: shutdown():void

Flype ExcelServerFactory 7
Status: Idle
Hostname: futurelap v < Ik
d | b Clear Messages | Filter Messages |
Close Module Nodes |
Figure 10. An example of interacting with an M S-Excel spreadsheet
excelFactory
ExcelServerFactory
client
1: getCostPredictor():CostPredictor : 11 costPredictor
= - CostPredictor
A [L:J
2: setVisibility(boolean):void | |
| e
3: getTitle():string : |IJ
4: setTOW(double):void : VL'J
5: setRange(double):void : VLJ
i >U
6: setNumberOfPassengers(long):void : |
I >u
7: getTotalCost():double : |
| i
T e e e — T - - - - - - —-—-—-——— J—J

y

Figure 11. A typical interaction with the Excel services

10

American Institute of Aeronautics and Astronautics

] i]] o i
22:59 (default) (1) set predla,or [${excelFactory] getCostPredictor] |-
tPredictor 5) le

C. Lifecycle management

It would be a hardship for the user to have to manually shutdown the many associated services running on
various computers if he decided to cancel an entire process flow for example. It would be easy to miss a few
services resulting in many orphaned processes eventually. The ICF has been designed to manage the life cycle of the
services in a practical way. As a general rule, any process that creates other processes shuts down those processes
before shutting itself down. For instance, a Controller is associated with a given design case. If the Controller is
shutdown it first shuts down all processes associated with the design case such as Launchers and Wrappers before
shutting itself down. Any ICF service can also be shutdown from the GUI or by issuing a “kill =1" on the process ID
or by pressing <Cntrl-C> on the command line for services being run interactively. When a process is notified to
shutdown, it notifies all subscribers to the Event Service that it is shutting down and removes itself from the Naming
Service registry to eliminate stale handles.

If a service terminates unexpectedly (such as if somebody issues a “kill —9” on the process ID) it will not get a
chance to unregister from the Naming Service and a stale entry will be left in the Naming Service. To handle this
situation, a given ICF client, such as the ScriptRunner or GUI, will initially test each handle retrieved from the
Naming Service by pinging it for liveliness prior to using it. If the ping fails, the handle is unregistered.

D. Starting anew | CF service

The sequence diagram depicted in Figure 12 represents a typical workflow for ICF service creation. The steps
are described as follows:

1. The Client (typically the GUI) asks the Naming Service for a reference to the Event Service Channel Factory by
name. For the ICF, the initial Event Service reference is always caled “EventChannelFactory” in the Naming
Service.

2. Once the Client has a reference to the Event Service, it tells the Event Service to register the Client as an
interested party for al future system messages. (This actually implies that the Client will act as a server to the
Event Service.)

3. The Client asks the Naming Service for areference to the Controller service.
4. Oncethe Client has the reference, it tells the Controller to start a new “Wrapper” process on Server A.
4.1. If aLauncher does not exist on Server A, the Controller creates one called Launcher_A.
4.2. Launcher_A registersitself with the Naming Service so it can be located easily in the future.
4.3. Once Launcher_A is started, the Controller tellsit to start a Wrapper on Server A.
4.4. Launcher_A starts anew Wrapper called Wrapper_1
5. Wrapper_1 aso registersitself with the Naming Service so other processes can locate it easily in the future.

6. Wrapper_1, after looking up the Event Service, registers itself with the Event Service as a producer of messages
and sends a status message to the Event Service

7. Having received a reference to the new Wrapper via the Controller in step 4, the Client tells Wrapper_1to start a
process. Natice that once a reference is obtained to a given service that methods can be invoked without knowing
where the service islocated.

8. Interactions with the Interface Repository are not explicitly depicted for the sake of clarity. Combat uses the
Interface Repository to look up every interface of the service that it is calling prior to calling methods on the
service. In addition, every Combat service looks up its own interface from the Interface Repository during
initialization.

11

American Institute of Aeronautics and Astronautics

Naming Servic Event Servicq

2.

=

Interface Repositor

Controller

1: Find Event Serv}ce

|
2: Send me system messages
|

|
3: Find Controller |

| |
| |
| |
| |
: All Services communicate with thBl

- ——— ——| IRD to obtain interface definitions

Launcher A

4.1: Launcher

|
|
|
|
|
|
|
|
|
|
|
! 4{1.1: Register Mg
|
|
|
|
|
|
|
|
|

6.1:

|
|
|
|
Y |
|
| | T
| |
4.2: Start Wrapper Wrapper_1
: : PR 4.2.1: Wrapper
| |
| |
| |
e L] n luj
|TA jI i | 5:Register Me|
! 1
| | I:I
|

| |
6: Sepd Status Messaged

7: Start Process

-

S

U

_________________1

Figure 12. Service creation wor kflow

E. Job Manager System

The MDO process requires a large number of
computer aided engineering solutions, most of which
can be run in parald. In the past, the user was
responsible for doling out the solutions to the various
computers available to him. It was difficult to know
how to best distribute the solutions for the most
efficient turnaround and to manage the associated
bookkeeping. A distributed job management system
was developed to aleviate this problem using the
facilities of the ICF. This capability allows a client,
such as a GUI, to start a Job Manager process that
efficiently parcels out jobs from a queue that it
manages to workers started by the Job Manager or
started manually on selected machines. Once initiated,
the workers request a task from the Job Manager. The
workers continue to request jobs until the queue is

A Do you have more work for me Boss?
‘N A
% /Linux Workstation
»

Multi-CPU
Solaris Server

=
s

|

SGI Workstation PBS Cluster

Figure 13. JobM anager

empty after which they are terminated. This approach allows efficient use of heterogeneous computing resources
including computers with managed batch queuing systems such as PBS and Linux clusters.

Linux clusters added a communication complication for the JobManager and other interested ICF clients. The
typical Linux cluster has a gateway node that can communicate with the internal nodes in the cluster and with
computers on the intranet. The internal nodes can contact computers on the intranet, but they cannot be contacted
directly from computers outside the cluster. Currently, MICO and Combat only support unidirectiona [1OP

12

American Institute of Aeronautics and Astronautics

communication and not bi-directional 110OP. This current state of affairs led to the solution shown in Figure 14. A
MiddleJobManager runs on the gateway node and acts as a proxy for the Workers running within the cluster. Any
communication with the Workers must go through the MiddleJobManager. This communication is transparent to the
GUI and other clients wishing to contact the Workers directly since the MidddleJobManager registers proxy
Workers in the NamingService for each Worker that it manages. Communications with the proxies simply get
delegated to the actual Workers. Also, when the Workers ask their MiddleJobManager proxy for the next job, it
simply passes the request up to the JobManager that is managing the central queue for all the Workers.

The jobs added to the JobManager’'s queue are themselves Tcl scripts that are executed by the Worker using
TclI’s“eval ” command without any prior knowledge of what the script does including interacting with other ICF
services to retrieve input files for instance. When adding the jobs to the queue, configuration constraint attributes
can be also specified such as allowable computer configurations. Each job can aso be specified as a sequence of
dependent jobs.

jobManager linuxLauncher
Jobmanager Running on gatewsy node L Launcher
gong Y - Running inside the firewall ll|

eperator]
start wark I | } |
e | | |
T	
creste on Linos cluster's gatew Mﬂgﬂ }	
MitidleJotManager	
add worker to PBS gueue m } linuxWorker	
T o= - warker	
! \	
} get next Ennsnj‘a\nedph {worker) while(job 1= nuily	
= f	
f{proxy nat exists	
(prosy Y prosyLinusWorker	
1 - Worker	
get next constrained job (proxy	
\Wurker)	Q
-t	
=}	
T ‘	
_______________ 2a]	
,,,,,,,, [I	
. !	‘
add constrained johs	} <sUpers fexecyte script
get status Ij ! }	‘
: } ; ; et status	
	I .
e T o T] o	
shutciown	
= L SHLLCOWN	shutdown
==	
	shutdowrT
D‘i	
	i
T	
[[! ‘ }	
I	‘ I
I \ ‘ ‘	

_Figure 14. Corhmunicating with wor kerswithin the firewalled Linux cluster

F. Deployment of | CF Services

To clarify how a network of 1CF services would appear on the network, a sample deployment is shown in Figure
15. For this configuration, the core CORBA services are running on a Linux workstation A. Other services are
deployed across the network on SGI, Cray, Sun and Windows machines. All of the | CF services depend on the core
services running on Workstation A. These core services can be shared by all MDOPT users or each user can start
his own set of services. Notice that on the Windows machine, that a Launcher is not running. This is meant to
illustrate a case where a user started a server (the ExcelFactory server) manually or with a system startup script. Due
to the networking issues discussed earlier on the Linux cluster, the Launcher and the MiddleJobManager must run
on the gateway node. The workers run on each individual node in the cluster.

13

American Institute of Aeronautics and Astronautics

Linux Workstation B

SGI Origin

MDOFT GUI Launcher
@ % Launcher
% Controller % JobManager

Linux Cluster

Linux Workstation A

Narming Irterface
Gateway Node Service Repository
Node n Middie

WOrker Jobtananer
- SHLManager O Evert DME
Service
N =ELE
Launcher
L R |

Cray

Wwindows WorkStation % Warker % Launcher
ExcelFactony

Server

—l

Figure 15. Sample Deployment of |CF Services

G. Overview of new | CF module creation

To create a new |ICF service, the IDL describing the service must be generated. To work seamlessly within the
MDOPT environment, the new interface should extend MDOPT::Base. If the implementation of the new service is
written in Tcl, the skeleton and some boilerplate code for the new service can be auto generated based on the new
IDL loaded in the IR. The skeleton will inherit |CF base functionality from the MDOPT::Base class implementation.
The new service implementation must allow the specification of the event channel 1D, the process name and process
owner as arguments to the program.

A simple input form for the MDOPT GUI for the new modul€'s inputs can be automatically generated at run
time based on an XML definition of the metadata for the input variables as shown in the example in Figure 16. The
description field is shown as “CDATA” to allow descriptions to be written in HTML in the future. The user can also
create a custom form if desired if the auto-generated form is not sufficient. The associated data to populate the form
is extracted from the master control document based on the module name. There are some richer
implementations'®,*of this concept available now in the industry that are good examples of how far this concept can
be taken.

Once the IDL is loaded into the IR, the new module' s methods will appear in the GUI after a new startup. The
new service must also be registered with the Launcher service as a trusted application by modifying an associated
file. Thislast step isn’t necessary if the service does not need to be started by the Launcher.

14

American Institute of Aeronautics and Astronautics

- <variable_definition>
- <module name="MyModule">
- <group name="group1" label="My Group Label" suggestedHeight="100"=>
- <file name="myFileVariable" label="My File Variable" default="myfile.dat">
<description=>Description of the file input</description=
</file>
- <enumeration name="optionVariable" label="My Option Variable" default="option1">
- <options>
<option value="option 1" label="0Option 1"/>
<option value="option2" label="0ption 2"/>
<option value="option3" label="0ption 3"/
</options>
<description> description of the optionVariable input</description>
</enumeration>
- <boolean name="myBooleanVariable" label="My Boolean Variable" default="true">
<description>A description of my boolean variable </description>
</boolean>
- <double name="myDoubleVariable" label="My Double Variable" default="20">
<description>A description of my double variable </description>
</double>
- <integer name="myIntegerVariable" label="My Integer Variable" default="1">
<description> integer description 2 </description>
<finteger>
- <string name="myStringVariable' label="My String Variable" default="some text">
<description>A description of my string variable</description>
</string>
</group>
</module>

</variable_definition=

XML Panel Test

—My Group Label
My File Variable: |fh0mea’md0pbinyﬂle.dat =
My Option Varable: Option 2 e |

My Boolean Yarahle: [

My Double Variable: (20

My Integer Variable: |2 =

My String Variable: |some text

<.
| & description of my string variahle |

[MyModule my StringVariable
.

4

Figure 16. An example of an XML description of the meta data for module inputs

and the associated auto-generated GUI

H. The Benefits of Dynamic Parsing and I nvocation

15

American Institute of Aeronautics and Astronautics

1. Combat’s CORBA use of DIl and DS

In the past, CORBA's fixed binary data structures described through IDL have had the problem of being brittle
and not easily versioned. This problem was because IDL doesn’t support versioning very well and typically the
stubs and skeletons for the clients and server code were statically generated, compiled and linked. Any time even
one field was added to an existing IDL struct or valuetype, al of the clients and servers would have to be upgraded
in the field to avoid marshalling and parsing errors. The CORBA standard does support reflective-style dynamic
invocation and marshaling via the Dynamic Invocation Interface (DII) and the Dynamic Skeleton Interfaces (DSI)
that leverage the IDL definitions stored in the IR server. Using this mechanism, the binary data stream can be
marshaled and parsed based on the current definition of the data stream obtained from the IFR. Using this
mechanism, Combat can determine how to parse a given data stream at run time based metadata retrieved from the
IFR.

2. Recent devel opments with CORBA reflection

Recently, Steve Vinoski of IONA proposed™® and passed a standard for CORBA implementers to support this
same reflective capability but without the requirement for an interface repository™. Each object reference can be
queried at run time for its interface information in either XML or the in the format described for the interface
repository by the CORBA standard. The new Reflection interface is very simple:

#pragma prefix "ong. org"
nodul e Refl ection {
exception Fornmat Not Supported {};
interface | FRProvider {
any ong_get ifr_netadata () raises (FormatNot Supported);
string ong_get _xnm _netadata () raises (FornmatNot Supported);

b

Frank Pilhofer has included this capability in the current Tcl version of Combat as well thus eliminating the
requirement for the interface repository server. (The GUI would still use the IR to allow user to interactively create
scripts in the script editor.) MICO's recent 2.3.12 release also supports the new IFRProvider interface. This
reflective capability should give CORBA users the ability to write code that is much more flexible and adaptable.
For instance, generic parsers can be created that will parse the binary stream based on the current definition of the
data records retrieved from the interface. If the program expects an older record, any additional data provided in the
record would be simply ignored without any unmarshalling errors.

On a side note, ASCII data formats like XML or Fortran-style namelists can be passed around just as easily as
binary data using CORBA's binary 110P protocol if desired. This is done for example with the namelist file in the
ICF when it can be more flexible to send the entire set of inputs rather than stripping out the minimum inputs
required and generating a set of associated IDL definitions. The namelist inputs are passed using a sequence of
name/list of value pairs defined in IDL as:

t ypedef sequence<string> NaneVal ues; # value data for each variable
typedef sequence<string> NaneTypes; # type data for each variable
void putNanelist (in NaneVal ues naneVal ues , in NaneTypes naneTypes);

These lists can be easily converted to aTcl hash array using: array set val ues $naneVal ues
XML, of course, could be passed in a similar way.

[11. TheData Management Facility (DMF)

The DMF is a framework that allows networked access to a centralized relational multi-user database. The
current DMF is built upon the free open source relational database MySQL and a Tcl extension called MySQLTcl®.
MySQL is a fast, networked, multi-user database that supports most of the SQL 92 standard. MySQL Tcl provides
the Tcl bindings to the MySQL communication library.

16

American Institute of Aeronautics and Astronautics

The DMF architecture alows data from non-automated and automated engineering processes to be included in
the optimization process from anywhere on the network. Currently, the DMF is used to store all of the scalar and
vector data needed by the different MDOPT processes. For instance, objective and constraint values required by the
response surface generation routines are calculated from the raw data stored in the database. Data can be stored and
edited either interactively through the DMF GUI as shown in Figure 17 or via the Unix-style command line interface
that can be embedded into shell scripts. The command line interface allows data stored locally in a file with a
Fortran-style namelist format (i.e. x = comma delimited list) to be stored in the database and the data stored in the
database to be retrieved locally to a namelist file. The DMF functionality can also be directly accessed
programmatically from within Tcl scripts viathe object-oriented DMF library or the ICF' s DMF proxy.

The DMF represents the canonical form of the data used in the optimization process. This approach limits the
creation of many to many translators required in a process where adaptors are written to trandate the output of one
program into the inputs for a second program. Translators for scalar and vector data stored in the database only need
to know how trandlate to and from one format stored in the database from and to one particular program’s format.

The DMF relies on a relational database. A typical relational database organizes data by columns in various
interconnected tables. The entity relational diagram, ERD, shown in Figure 18 depicts the tables and their
relationships to each other for the DMF database. All the desired computed data for the solutions are stored in one
table called VarValues. This type of table structure was designed to alow the database to scale to any number of
variables associated with data vectors of varying lengths without having to create new table columns for each
variable. Since MDOPT allows the user to create variables on the fly, it was important that the database schema
support new variables without requiring table structure changes. The design tradeoff is that SQL queries are a little
more complicated and performance can be slower, but through the careful use of table indexes, data retrieval from
the DMF isfast even with such a simple table structure.

D C
Database Userid: |mdopt Databhase password: |~
Database Server: |futuresparcl
D Editor
Database: mdopt — | jon Mode: | S28ct Multiple Variahles Select a Single Variable
: and Single Subcases and Multiple Subcases
Cases SubCases Desigh Points Polar PointID Modules Variahles
tci-mdo : 0 | | 1 0 FLOW & | ALPHAPPT
tc1b-mdo 1 J 2 FLOWFROP ALTPFT
to2-de 2 FRCREF] cD
tc2-dez 3 GEMERAL CDCOMP
to2-mdo 4 HOAGEN ol
tc2a-mdo] HYPGEN A CDICOMP
tceh 6 CDRM
in - - Eemn comnng
te2-dez 0123456 1 o FLOWPROP cD
Get Data,
Subcasesindex 1
o 0.130127E-01
1 0111523E-01
4 0.668354E-02
3 0.766950E-02
4 0.991417E-02
5 0.200756E-01
B 0.109452E-01
Save Edited Data

Figure17. DMF GUI

Most of the other tables provide metadata associated with the computed data values. For example, the Variables
table contains descriptions of each variable including its name, type, units, allowable range, and a human readable
description. This information is available from the DMF GUI. The Cases table’'s columns provide a way to ID a
particular solution. The current scheme reflects the domain-specific organizational structure of the data.

17

American Institute of Aeronautics and Astronautics

Cases

. i PointlD
Uans \.-‘arl.ahIeTypes CaselD
UnitsID variahleTypelD SubCaselD
UnitsMame ariahleType DesignPaointiD
UnitsLastModified variahleTypelLasthodified PolarlD
PolarPointiD
+ + CasesLastModified
| |
| FK_Units FK_WatiableTypes | 1
- 1 r—————— - |
| | |
| | Fi_Cases |
| | |
iR '
A A
Modules Variahles Varvalues
ModulelD ModuleName ValuelD
Modulehame 1 Fi_Madules D] :ﬂar&allal?g?:me ModuleMarme(Fk)
Deseription ' oouleIDEFK) VariablaMName(F i)
ModuleLagthodified variablelD . FK_Varvalues ModulelD(Fk)
Descnplnnln ! PointiDFK)
LowerLimit VariablelD
UpperLimit Warvaluelndex
DefauINaIue Varvalue
UnitsID{FK) VarvalueLastodified
WariahleTypelD(FK)
) . —
YariahleLasthModified
—

Figure 18. Database Schema for DMF

One recent addition to MDOPT is the ability to track the status of steps of the process in the database. Traditionally,
a status summary was stored for each PointID in the file system. But, this had the disadvantage of not being easily
accessible from non-NFS mounted computers, being slow to access for the 100°'s of cases being run and only
recorded the status of the last step. The information is organized as shown in Figure 19. A given process is a
number of steps. Each step has a unique name and a number. The number does not have to be unique in order to
handle paralldl steps. Step names can be process names in order to model a hierarchy of processes. A notes log table
has also been included so that the users keep ajournal of the design work.

Cases
HotesLog FaintlD
MessagelD FK_Cases CaselD
PointlDiF k) b — - —————— + Subpaselp
ProcessSteplDIFK) DesignPaintlD
Motes FolarlD
MotesLastModified FolarPointlD
CazeslastModified StatusStates
%/ T StatusStatelD
| | StatusState
| | —— StatusStateLastModified
‘ | |
FK_ProcessSteps | | I
| FK_Cases! | |
|
| } Fk_StatusStates I
T+ \ |
ProcessSteps |
PracessSteplD Status |
StatusID o —|
ProcessMame -
StepMame FK_ProcessSteps PointDFk)
StepMumber F+————————— 0] ProcessSteplDiFk)
StepDescription StatusStatel DFK)
ProcessSteplastModified StatusMessage
Hostnarne
StatusLastModified

Figure 19. Database Schema for Statusand L ogging

18

American Institute of Aeronautics and Astronautics

A very useful feature of this capability is that the JobManager can query the status of a given job if it loses
connection with a given worker before the worker had a chance to report to the JobManager that it was finished. It
also alows for finer grain knowledge of where the process failed so that the process can be restarted from the last
successful step.

Database access is accomplished in different ways depending on the application. It is accessed directly via
alncrTcl facade that utilizes the MySQL Tcl library. A DMF CORBA server is also available that delegates to the
database facade object to alow generic CORBA clients to access data without having to have intimate knowledge of
the database or to load a given MySQL communication library.

IV. Bringingit all together - An Optimization Wor kflow

MDOPT supports two different automatic optimizer-driven processing modes: 1) direct gradient based and 2)
surrogate model refinement based. With the first approach, the gradient-based optimizer driver will request object
and constraint values and their gradients for a given design vector. With the second approach, the driver will request
object and constraint values for a series of design vectors. We have found over the years, that a fully automatic and
robust optimization process is difficult to achieve in practice especialy for the type of problem that MDOPT is
addressing. The complex engineering codes used to analyze the airplane configurations are long running, resource
intensive and can have many failure modes. Many times if a solution fails for a given design vector, the inputs can
be changed manually to remedy the problem. Or, if there is related intermittent resource problem such as running
out of disk space, resources can be cleared manually. If afailure occurs, it would be preferable if the process would
suspend execution and allow a human to try to fix the problem and resume the execution rather than failing
completely and possibly wasting days of computing time.

The ICF features discussed previously provided the foundation for the of an optimization process flow allowing
aman-in-the-loop interaction. The current incarnation of this processisillustrated in Figure 20.

19

American Institute of Aeronautics and Astronautics

7S

operator

optimizer

———=-]

Yrapper

while(not converged)

jobManager
p=-| JOBManager

for(each design vectar)
—‘ add constrained job I

|

get me the results |

far(rmor]

walt far job manager to finish

==t}

eraWorker
Wwarker

job failed (workgr|

T

1

rotify operatar|j

a

<sUpErs fstart process

dmfProxy

EmailServer

DMF

while(job 1= null)

if(jol fails)

ed

here are the results

_______.l_—|_____

et next matching job fworker

if{fixed input for failed job)
|

retry failed:case

ifloueue is empky &0

store status of each step

store failed sthtus

0

O no failed jobs)

L T

L

|
|
|
|
|
|
|
|
job fhiled, please fix
|
|
|

E else-if(ran firflished job manually)
clear failedcase

Jot manager will create another worker
if none are currently available and attempt to
finish the gueue of remaining johbs

f
|
'|' resume workd
|
|
|
|
|

B T S

-~

|~
-~

-~

-~

-

-~

Figure 20. Man in the loop optimization process

American Institute of Aeronautics and Astronautics

20

-~

As shown, when the optimizer driver requires function values for a set of n design vectors, it creates a new
JobManager, adds n arbitrary jobs to the JobManager's queue, and requests that it produce the results. The
JobManager then creates a set of workers on various machines specified by the user and manages the workers
requests for jobs. (The details of the actual process to create aworker have been eliminated for clarity.) If the worker
detects that the job it was running failed to produce a valid solution, it notifies the JobManager that adds the job to a
failure list and notifies the operator that there has been a job failure. The JobManager continues to process requests
for jobs by the workers. Once the queue is exhausted, the JobManager terminates the workers as they ask for new
work. If there are failed jobs in its list, the JobManager transitions to an idle state, otherwise it terminates itself and
the optimizer driver reads the desired results from the database and continues to solve the problem. If the operator
has been notified of afailure, he can take a number of actions to rectify the problem: he can run the solver for the
particular design vector manually and then clear the job from the JobManager’s failed job list; he can modify the
inputs for the failed job and then tell the JobManager to retry the job; or he can choose to abort the entire process by
shutting down the parent process. The ICF GUI gives the operator full freedom to query and modify the queue state
of the JobManager as required, start additional workers or terminate existing ones, and retrieve file and state
information from the workers as a given job progresses.

V. FutureWork

The current ICF does not incorporate a robust security model yet. This has not been a requirement for the
framework since all of the work is done within the confines of the corporate firewall. To communicate beyond the
firewall, the combined used of standard portable interceptors to authorize access to a given method and secure
sockets layer to encrypt the data would be used. We are also investigating the use of bi-directional GIOP or a full-
fledged 110P proxy to provide a more complete solution to simplify Linux cluster firewall communication. A more
reflective Excel Server could be written that would allow the user to dynamically explore and access fields in an
arbitrary spreadsheet through the ICF GUI. A graphical workflow editor based on one of the open source workflow
projects will continue to be investigated. Currently all status and logging events are sent over one CORBA event
channel for each major case. Although the user can filter the messages he wants to see at the GUI, it would be more
efficient to filter the messages at the server using separate event channels per sub case or perhaps moving to the
CORBA Notification Service instead that supports server-side filtering. The new CORBA reflection standard is
compelling from a IDL versioning standpoint. As part of our research, we are going to investigate the advantages of
using this new approach for unmarshalling of the data streams.

V1. Conclusions

The MDOPT system represents a major step forward in the development of design optimization capability. The
standards-based ICF and DMF services give MDOPT cost-effective upgrade paths and flexible integration
possibilities. The flexibility of the system has been demonstrated through actual implementations of complex
workflows. The simplicity of development of the Combat scripting model for CORBA client/server applications has
also been shown.

21

American Institute of Aeronautics and Astronautics

Appendix A — Examples of three CORBA ORBs using three different languages inter operating

Figures Figure 21 and Figure 22 are screenshots of two different interface repository browsers written in two
different languages, Java and Tcl respectively, communicating with a CORBA server written in C++. The Java
implementation was written using the open source JacORB ORB, the Tcl implementation used Combat, and the
CORBA server was implemented with MICO. This example is meant to demonstrate that many of the
interoperability issues between CORBA ORBs have been solved with modern implementations. There are still some
interoperability issues for some of the more advanced security and communication (e.g. bi-directional 110P) models,
but they are being continually incrementally improved.

= IRBrowser — ::MDOPT ::Wrapper::pipeProcess ==
Navigate
[T T e G IS TE T Tne Name
o [T interface ExcelServerFactary BRI PG OuT)
o T interface ExcelSpreadSheat void chir —
o=] interface Filelteratar string evalTcl
o [T interface FilsObject long BABLPIDCEss
) tetiol) string getProcesshame
o] ?merface FileObjectProvider string getProgramiame
o [T interface JobManager ‘|operatian MDOPT::Statush... getStatus
o= T interface Launcher “operation MDOPT. Statusm... getStatuswithout...
o= [J interface MiddlelobManager “operation shart getTelFunctions
o= [interface SeriptRunner “|operation short getwrappetFuncti...
o [T interface StatusListenar “|operation short killMIProcesses —
o= [interface StatusListenarhiodel 1 operation short k!HExecProcess
h short killPipeProcess
o=] interface Warker chart natify
¢ [Jinterface Wirapper long pipeProcess
[} const chairDeseription short rerunFipeFrocess |=
D const evalTelDescription long restariPinging
[const execProcess Descrintion short stat
. lang startPinging
Q const getProcessMameDescripti long stopPinging |
4] Il | [¥] | |operation vaid fell -
aperation ~MDOPT:Wirapper=pipeF acess
ersion 10
Repository 1D IDLMDOP T/ apperpipaFrocess:1.0
Type: long
JExseptions: SMDOPT:MWirapper:ProgramNotFound

Figure21. A Java IR browser client using JacORB communicating with the C++ ORB MICO’sIR

[
Help

=
File Edit View
|-CaPbsParams

Interface Repository Browser

B WalidPhsParan
(3 PhslaneValue
B PbelaneValues
(3 Processilamef 1read;
- Executionbrror
3 JoblotFound
B Statusllessage
-1 5tatuslistener
-1 5tatuslistenertiod
o Wrapper
—Ca Progranfailed
(1 ProgramiotFound
& pipeProcessDescr
& pipeProcess
B execProcessDescr
B execProcess
& killExecProcessD
& killExecProcess
& rerunPipeProcess
& rerunPipeProcess
& killPipeProcessD
& killPipeProcess
& killAllProcesses
& killAllProcesses
& getStatuslescrip|
1

Operation ::MDOPT::Wrapper::pipeProcess

Repository Id [IDL:MDOPT/Wrapper/pipeProcess:1, 0

Name pipeProcess

Yersion L. 0

Mode |normal M

Return Type [long

Parameters

in ~lemecutableMlare [string

in =|arguments [string
(end of parameters)

Exceptions

0z :DOPT: :Wrapper: : PrograntotFound
(end of exceptions)

Figure22. A Tcl IR browser client using Combat communicating with the C++ ORB MICO’sIR

22

American Institute of Aeronautics and Astronautics

Appendix B — Programming a simple weather service client and server using Combat and Tcl

The Combat Tcl bindings make it very easy to create a CORBA client/server application. For instance, given an IDL
definition for a simple weather service of:

struct Wat her {

doubl e tenperature;
doubl e hum dity;

interface Wat her Servi ce {

}s

Weat her get Weather(in string city, in string state);
oneway void shutdown();

that defines a data structure called Weather that is returned by the getWeather method of the WeatherService
interface, the corresponding Combat client written in Tcl would be:

eval

corba::init \
—CORBI ni t Ref \
NameSer vi ce=cor bal oc: i i op: myhost : 9004/ NaneServi ce \
-ORBI ni t Ref \
I nt erfaceRepository=corbal oc:iiop: myhost: 9005/ I nt erfaceRepository

corba::try {

ns [corba::resolve_initial _references NaneService]

set service [$ns resol ve_str Weat her Servi ce]

set output [$service getWather “Austin” “Texas”]
array set weat her $out put

puts “tenperature = $weather(tenperature)”

puts “humidity = $weather(hunidity)”

} catch { ... e} {

}

puts "Error: $e"

As shown, Combat maps IDL structsto a Tcl list of name value pairs. One benefit of this mapping is the weather
service can return more information in the future and the Tcl code will continue to execute correctly.

A barebones implementation of the corresponding WeatherService server would look like:

OCoOoO~NOUA,WNE

itcl::class WatherService {

inherit Portabl eServer:: Servant Base
private vari abl e nypoa;

public method _Interface {} {
return "1 DL: Weat her Servi ce: 1. 0"
}

public method getWather { city state } {
return [list tenperature 101.5 humdity 75]

public method shutdown {} {
puts "shutting down weat her service"
$this destroy
puts "exiting"
gl obal forever; set forever 1

}
public nmethod destroy {} {

corba::try {
set ns [corba::resolve_initial _references NaneService]
$ns unbind [list [list id WatherService kind {}]]

} catch { ... e} {
puts stderr "Error unregistering WatherService: $e"

}

23

American Institute of Aeronautics and Astronautics

Most of the non-implementation-specific incrTcl code for this server was generated using a Combat script that
gueries the interface repository for the necessary metadata and writes out the incrTcl classes based on a boilerplate
templ ate.

The CORBA ORB isinitiaized on line 58 with the locations of the naming service and the interface repository.
An instance of the WeatherService object is created on line 64. At this point, the serviceis still not activated yet. For
comparison, two different approaches are shown for activating the object. The “startWithDefaultPoa’ method uses
the implicit activation feature of the default portable object adaptor.

set obj [corba::resolve_initial _references POACurrent]
set poa [$obj get_ PQA]
set oid [$obj get_object_id]
$poa deactivate object $oid
del ete object $this
}

public nmethod unregister {} {

corba::try {
set ns [corba::resolve_initial _references NaneService]
$ns unbind [list [list id WeatherService kind {}]]

} catch { ... e} {}

}

public nmethod register {} {
$this unregister
set ns [corba::resolve_initial _references NameService]
set ref [$this _this]

$ns bind [list [list id "WatherService" kind {}]] $ref

}

public method startWthDefaultPoa {} {
set nypoa [corba::resolve_initial _references Root POA]
set ref [$this _this]
$this register

public method startWthCustonPoa {} {
set poa [corba::resolve_initial _references Root POA]
set ngr [$poa t he_POAManager]
set nypoa [$poa create_POA MyPQA $ngr \

{SI NGLE_THREAD_MODEL RETAIN USER I D | MPLI CI T_ACTI VATI ON PERSI STENT}]
set oid [$nypoa activate_object_wi th_id Weat her Servi ce $this]
set ref [$nmypoa id_to_reference Weat her Servi ce]
$this register

}

}
eval corba::init -ORBlInitRef \

NameSer vi ce=cor bal oc: i i op: futuresparcl: 9004/ NaneServi ce \
- ORBI ni t Ref \
I nterfaceRepository=corbal oc:iiop:futuresparcl: 9005/ nterfaceRepository

#cr eat eobj ect

set server [Wather Service #aut o]
#activate object

$server startWthCust onPoa
#$server startWthDef aul t Poa
puts "server running"

set poa [corba::resolve_initial _references Root POA]
set ngr [$poa t he_POAManager]

#istart accepting requests

$ngr activate

vwait forever

exit

24

American Institute of Aeronautics and Astronautics

The “startWithCustomPoa” method creates a custom POA with some desired features such as single threaded
dispatching and a user specified name so that the service will have the same name in it's IOR which when combined
with a specified port number makes it easy to bind to the service even independently of a naming service. In both
cases, the server registers itself with the naming service as shown in the register method on line 36.

The server starts receiving requests when POA manager is activated as shown on line 73. The “vwait” command
shown on line 74 tells Tcl to enter into its event loop until “forever” changesits value.

Acknowledgements

MDOPT was developed under joint funding from the Air Force Research Laboratory, Wright-Patterson AFB, Ohio,
under the Multi-Disciplinary Optimization Using Computational Fluid Dynamics, MDOPT, Contract Number
F33615-98-2-3014, and from Boeing cost match funds. The work was performed by the Boeing Company, Phantom
Works Organization, in Seattle. Dr. Don Kinsey and Lt Charles Hoke were the USAF Project Engineers. Gasper
Fatta was the Boeing Program Manager and Dr. William Herling was the Principa Investigator. In addition to the
authors, program development was completed by Mr. Dean Barron, Mr. Gordon Blom, Dr. Andrew Booker, Mr.
Kwan Chang, Mr. Dr. Jonathan Elliot, Ranald Engelbeck, Dr. Paul Frank, Dr. Neal Mosbarger, Mr. David Treiber,
and Dr. Matt Warfield. Contributions from Lt. Charles Hoke are gratefully acknowledged. His testing and feedback
during the development of this system was a key component to the successful completion of MDOPT. In addition,
acknowledgment is given to NASA for the technology contributions to several of the system modules. These include
OVERFLOW, Chimera Grid Tools, CSCMDO, TWING, TLNS3D, HYPGEN and WINGDES. Finaly, many
thanks are given to Frank Pilhofer and Karel Gardas for their contributions to the Combat and MICO software and
their conscientious support.

References

! Stephen T. LeDoux, William W. Herling, Joe Fatta, Robert R. Ratcliff, “Multidisciplinary Design Optimization System
Using Higher Order Analysis Codes”, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 30 August -
1 September 2004, Albany, New Y ork, AIAA 2004-4567.

2 Tcl/Tk Developers website, URL : http://www.tcl.tk/ [cited August 2005]

3 Combat website, URL : http://www.fpx.de/Combat/ [cited August 2005]

4 CORBA 2.3.1 Specification, URL: http://www.omg.org/cgi-bin/doc?formal/99-10-07 [cited August 2005]

5MICO (MICO Is CORBA) website, URL : http://www.mico.org [cited August 2005]

5 MySQL website, URL : http://www.mysql.com [cited May 2004]

" Portable Batch System, URL : http://www.openpbs.org, Altair Engineering, Inc, [cited August 2005]

8 CORBA Product Matrix Comparison, URL: http://www.puder.org/corba/matrix [cited August 2005]

® MICO mailing list, “Announcement of MICO port to uCLinux”, URL: http://www.mico.org/pipermail/mico-
devel/2005-June/009334.html [cited August 2005]

10 william W. Herling, Stephen T. LeDoux, Robert R. Ratcliff, “Application Studies using the 3DOPT Integrated Design
System”, AIAA Applied Multi-disciplinary Optimization Conference, AIAA-98-4720, September 1998.

1 william W. Herling, Howard T. Emsley, Stephen T. LeDoux, Robert R. Ratcliff, David A. Treiber, Mathew J. Warfield,
“3DOPT - An Integrated System for Aerodynamic Design Optimization”, AIAA Paper 98-2514, June 1998, 16th Applied
Aerodynamics Conference, Albuquerque, NM.

12 Chad Smith, 2000, “[incr Tcl/Tk] from the Ground Up”, McGraw-Hill.

13 The TclJava devel opment website, URL : http:/tcljava.sourceforge.net/docs/website/index.html [cited August 2005]

14 CORBA Event Service 1.1 Specification, URL:
http://www.omg.org/technol ogy/documents/formal/event_service.htm [cited August 2005]

1% Tcom website, http://www.vex.net/~cthuang/tcom/ [cited August 2005]

16 Java Desktop Components Website, https://jdnc.dev.java.net/ [cited August 2005]

17 JaxFront Corporate Website, http://www.jaxfront.com/pages/ [cited August 2005]

18 Object Management Group, “CORBA Reflection: OMG Request for Comments’, OMG document mars/2004-08-12, 2004;
URL.: http://www.omg.org/cgi -bin/apps/doc?mars/04-08-12.pdf.

19 Steve Vinoski, Douglas Schmidt, “XML Reflection for CORBA”, C/C++ Users Journal, December 2003,

URL: http://www.cuj.com/documents/s=8943/cujexp0312vinoski/ [cited August 2005]
2 MySQLTdl (Tcl bindings for MySQL) Website, URL: http://www.xdobry.de/mysqltcl/ [cited August 2005]

25

American Institute of Aeronautics and Astronautics

