
2007 JavaOneSM Conference | Session TS-3723 |

TS-3723

Designing Scalable High
Performance Rich Clients
from the Trenches

Rob Ratcliff

Partner/Consultant/Lead Engineer
FutureTek Net Services LLC http://
www.futuretek.com/

http://www.futuretek.com/
http://www.futuretek.com/
http://www.futuretek.com/

2007 JavaOneSM Conference | Session TS-3723 2

Session Goals

Learn practical design lessons from the
development of a challenging networked
rich client application

Design Lessons from the Trenches

2007 JavaOneSM Conference | Session TS-3723 3

About FutureTek LLC
• Founded in 1995
• Projects and Technologies

• High performance rich networked Swing clients
• Distributed Multi-Disciplinary Optimization Framework

for Boeing, MDOPT
• CORBA integration
• Database applications
• Java based web projects

• On-line ordering, radio show scheduling, call center, inventory
management

• Multi-player trivia game applet

• Co-founded Austin Java Users Group
http://www.austinjug.org

2007 JavaOneSM Conference | Session TS-3723 4

Agenda

• Overview of the “NEWS” Project
• Architecture Overview
• Comparison and Contrast of Design

Solutions
• War Stories and Lessons Learned
• Summary

Changed

2007 JavaOneSM Conference | Session TS-3723 5

NEWS Project Background

• Design GUI to control a network of sensors and display
the resulting engineering data in near real time

• Overall Design Approach
• Mockup screens using NetBeans to allow customer to

interact using mock data
• Java Swing Toolkit for GUI (rather than AWT)
• Stateful high-performance binary protocol and

asynchronous messaging
• Simple command+name/value pair control language
• Socket per session mimicking a distributed service

factory (made demultiplexing of events easier too)
• Develop mock server to accelerate development

2007 JavaOneSM Conference | Session TS-3723 6

Application Display Requirements

• Support streaming data (positions and speed,
signal, status, audio etc.)

• Display time-varying positions and other sensor-
related data on a world map

• Display data in time order
• Synchronize all views in time
• Synchronize selection in all views
• Minimal mouse clicks to access functions
• Display all relevant data up front

2007 JavaOneSM Conference | Session TS-3723 7

Design Scalability Defined

• Feature
– GUI Layout

• Toolbar space
• Menu Structure
• Screen real estate
• Feature Navigation

– Hooking in new components
– Leveraging what others have

done
• Duration (long execution runs

and multiple sessions)
– Memory Performance
– CPU Performance
– GUI Responsiveness

• Development
– Practice type safety first (avoid

string based paradigms)
• Ease editing through IDE

auto-completion
• Ease refactoring
• Ease debugging through

compile-time error
checking

– GUI-builder and XML driven
screens for easier long term
maintenance

• Deployment
– Easy configuration as number

of settings increase
– Simple software update

2007 JavaOneSM Conference | Session TS-3723 8

NEWS Initial Mockup Rapidly Generated
Using NetBeans GUI Builder

2007 JavaOneSM Conference | Session TS-3723 9

NEWS Networked Sensor Application

2007 JavaOneSM Conference | Session TS-3723 | 10

DEMO
NEWS Intruder Detection Scenario

2007 JavaOneSM Conference | Session TS-3723 11

Architecture Forensics

Network Layer Reader Writer Queue

Event Generation
& Parser Layer UFF SNLNMSG

GUI Visual Layer

Toolbars

Dialogs

Data Plots

Information Panels

Menus

Application Layer

TM Proxy Session ModelEvent BusQueues

Plot Interaction Controls

Data Selection Widgets

Plot Models

Tables

Component LookupPreferences

2007 JavaOneSM Conference | Session TS-3723 12

I’m an Enterprise Unto Myself

Large GUI applications share many of the problems
that distributed component architectures have

• Complex threading issues
• Lookup and hookup with “distant” components

and models
• Asynchronous notification
• Transactions
• Persistence
• Data mappings and graph navigation

Changed

2007 JavaOneSM Conference | Session TS-3723 13

Where in the World is My Component?

• Dependency Injection (Constructor or Setter)
• Singleton
• BeanContext
• Lookup Services
• Event Bus

2007 JavaOneSM Conference | Session TS-3723 14

Dependency Injection before Injection was
Cool
SessionContext idea borrowed from the earlier EJB specification

2007 JavaOneSM Conference | Session TS-3723 15

SessionContext

• Creation
• Create Queues and Worker Threads
• Data Models
• Register data models with event bus
• Component listener hookup

• Destruction
• Thread shutdown
• Socket disconnect
• Component listener removal (to avoid memory leaks)

Life Cycle Management

2007 JavaOneSM Conference | Session TS-3723 16

Session Life Cycle
sd Interaction

Client :SessionManager

s:SessionContext

p:TMProxy

bus:EventBus

n:Network

component:Sessionable

createSessionContext()createSessionContext()

createSessionContext()createSessionContext()

getInstance()getInstance()

**

disconnect()disconnect()

**

**

**

clearSessionContext()clearSessionContext()

removeModelListeners()removeModelListeners()

addModelListeners()addModelListeners()

setSessionContext()setSessionContext()

2007 JavaOneSM Conference | Session TS-3723 17

Domain Specific Data Model

Usage:

sessionContext.getNetwork()

.getLocalSensor()

.getPvtModel().getRecords();

Advantages

• Easy to navigate

• Domain specific data rules and state

Disadvantages

• More coupling due to dependencies

• Harder to test

Sorted tree map
used to keep
records in time
order

2007 JavaOneSM Conference | Session TS-3723 18

Singleton Example
Type-Safe Preferences Management

• Goal: Make preferences easily accessible to
programmer without having to know magic strings

• Type safe façade class
to access properties for
a given module

• Use one property file

Note: Java Beans BeanInfo framework
very useful for dynamically setting and
serializing property values and auto-
generating property sheets

2007 JavaOneSM Conference | Session TS-3723 19

Singleton Tradeoffs

Advantages
• Simple concept
• Globally accessible
• Ensures one

instance

Disadvantages
• Leads to tighter

coupling
• Ensures one

instance

2007 JavaOneSM Conference | Session TS-3723 20

BeanContext Architecture
and Navigation

• Based on composite design pattern

Note: OpenMap framework built on java.beans.BeanContext
infrastructure

2007 JavaOneSM Conference | Session TS-3723 21

Sample BeanContext Interfaces and
Support Classes and Consumers

2007 JavaOneSM Conference | Session TS-3723 22

Adding a Bean to the BeanContext

Note: The OpenMap framework delegates all added context change
notifications to the findAndInit(Obect o) to reduce the number of user-
implemented methods

Changed

2007 JavaOneSM Conference | Session TS-3723 23

BeanContext Tradeoffs

Advantages
• Flexible composite

structure
• Part of the standard

JDK distribution
• Allowed easy

integration with the
OpenMap framework

Disadvantages
• Rather large set of

interfaces and
methods to implement

• A bit complicated
• Custom code required

to support hierarchical
notifications and
searches

2007 JavaOneSM Conference | Session TS-3723 24

Example Lookup Services

• NetBeans style Lookup
• (ChatProxy)Lookup.lookup(ChatProxy.class);
• (ChatProxy)Lookup.lookup(

new Template(ChatProxy.class, “mychat”));

• JNDI Lookup
• (ChatProxy)context.lookup(objectName);
• (ChatProxy)directory.search(contextName,

attributes)

2007 JavaOneSM Conference | Session TS-3723 25

Keep Asynchronous “Remote Calls”
Simple Through Synchronicity

• Listener and correlation ID pattern to block for
response when protocol is asynchronous or
message based

• Foxtrot keeps GUI lively (Concurrent worker vs.
Single worker)

• Deliver events in correct thread

2007 JavaOneSM Conference | Session TS-3723 26

Synchronous Pub/Sub Paradigm with
Asynchronous Communications

How about embedding
JMS into a rich client?

2007 JavaOneSM Conference | Session TS-3723 27

InvokeLater Insanity
“Doing the same thing over and over and expecting

different results” – Ben Franklin

• Expecting developers to consistently use
SwingUtilities.invokeLater() is wishful thinking at
best

• Framework should take care of this automatically

2007 JavaOneSM Conference | Session TS-3723 28

Inter-component Communications
using Event Bus

• Listeners implementing SwingListener interface
receive delivered events on EDT

• Listeners register for Swing events by type
• Events pushed onto bus

Changed

2007 JavaOneSM Conference | Session TS-3723 29

Using Event Bus for Inter-Component
Communication Tradeoffs

Advantages
• Supports multiple

producers of a given
event type

• No knowledge of
producer required

• Can hook up directly
with producer via
“source” of event

Disadvantages
• Proliferation of

event types
• Slower performance

than direct method
calls

• Demultiplex desired
producer

Changed

2007 JavaOneSM Conference | Session TS-3723 30

How does Foxtrot Work?

2007 JavaOneSM Conference | Session TS-3723 31

Embedding Foxtrot into Remote Interface
Proxy (Stub) using Dynamic Proxy

ChatProxyHandler chatProxyHandler =

new ChatProxyHandler(chatProxyDelegate);

ChatCommand proxy = (ChatCommand)
Proxy.newProxyInstance(loader,
 new Class[] { ChatCommand.class },
 chatProxyHandler);

2007 JavaOneSM Conference | Session TS-3723 32

Dynamic Proxy Continued

class ChatProxyHandler implements InvocationHandler {
 public Object invoke(Object proxy,
 final Method method, final Object[] args) {
 this.fireBusy(true); Object value = null;
 try {

if (!SwingUtilities.isEventDispatchThread()) {
 value = method.invoke(delegate, args);
} else {
 value = ConcurrentWorker.post(new Task() {

public Object run() throws Exception {
return method.invoke(delegate, args);

}
 });
}

 } finally {
 this.fireBusy(false);

 }
return value;

}
}

2007 JavaOneSM Conference | Session TS-3723 33

• Desired Behavior:
• In a time-based simulation, all views need to be time synchronized

to avoid confusion
• Selected points in one view may need to cause selection of points

in other views

• Causes
• Current Timestamp changes
• User selects data that may or may not cause a timestamp change

• Solutions
• Spoke and hub
• Point-to-point

Global Selection Notification

2007 JavaOneSM Conference | Session TS-3723 34

Low Maintenance GUI Forms
Higher Team Development Scalability

• GUI builder generated forms like NetBeans’
Matisse

• Forms generated from XML data descriptions

• Forms generated from Java Beans and BeanInfo

Changed

2007 JavaOneSM Conference | Session TS-3723 35

Generating Forms Automatically
with XML

<config>
<boolean name="enabled">

<value>false</value>
</boolean>
<long name="expiration">

<value>5</value>
</long>
<string name="when_to_run">

<value>weekly</value>
</string>
<string name="day_of_week">

<value>Sunday</value>
</string>
<string name="time_to_run">

<value>2359</value>
</string>
<boolean name="delete_file">

<value>true</value>
</boolean>

</config>

<configDescriptor>
<stringDescriptor name="day_of_week" privilege="operator" label="Day of
week" recommended="Sunday">

<description>If weekly, sets days of week</description>
<options>

<option value="Sunday" label="Sunday"/>
<option value="Monday" label="Monday"/>
<option value="Tuesday" label="Tuesday"/>
<option value="Wednesday" label="Wednesday"/>
<option value="Thursday" label="Thursday"/>
<option value="Friday" label="Friday"/>
<option value="Saturday" label="Saturday"/>

</options>
</stringDescriptor>
<booleanDescriptor name="delete_file" privilege="operator" label="Enable
auto-delete instead of auto-prune" recommended="false">

<description>Enables auto-delete instead of auto-prune (auto-prune removes
only signal data) </description>
</booleanDescriptor>
...

</configDescriptor>

2007 JavaOneSM Conference | Session TS-3723 36

War Stories and Lessons Learned

• GUI locked up!
• Start session dialog comes up blank!
• System won’t respond!
• GUI is hogging the CPU!
• GUI is hogging memory!
• GUI is hogging file descriptors!
• Sessions won’t start due to a null pointer

exception!
• I’m seeing thousands of index out of bounds

exceptions!

2007 JavaOneSM Conference | Session TS-3723 37

Post Mortem Analysis of Bug History

• 1600 total bugs/enhancements over 4 years

• 323 P1 categorized bugs

• 67 GUI freezes/deadlock bugs

• 82 Null pointer exception bugs

• 68 Index out of bounds

2007 JavaOneSM Conference | Session TS-3723 38

Embarrassing Lockups

• Primary Reasons
• Developer forgot to use InvokeLater leading to deadlock
• Synchronous calls to non-responsive server made in EDT

• Remedies
• Check wrong thread with custom repaint manager
• Foxtrot – Concurrent or Single Worker model
• SwingWorker – Asynchronous solutions
• Don’t burden programmers, embed this in framework

• Dynamic Proxy and Chat application
• “SwingListeners” – Event distributor automatically deliver events

to listener on EDT
• Practice DRY (Don’t Repeat Yourself)

2007 JavaOneSM Conference | Session TS-3723 39

Teach Testers about “kill –QUIT”

• Deadlocks are hard to find, especially when they
are intermittent

• Compile code with debugging symbols turned on
• Tell QA folks to use “kill –QUIT” during a lockup

to produce a detailed stack trace

2007 JavaOneSM Conference | Session TS-3723 40

Beating Death By a Thousand Paint Strokes

• Scheduled repaints

• Eliminate off screen label/icon/line paints

• Paint only “dirty” regions and only when “dirty”

• Use off-screen buffered images for static map layers like the
coastlines of the world (See OpenMap’s BufferedImageRenderPolicy for an
example)

• Use polyline and buffered images to avoid loading up X-server

• Watch out for slowdowns caused by semi-transparent colors when
displayed over remote X

• Change Java2D command line parameters for optimal remote X
operation, such as:

-Dsun.java2d.pmoffscreen=true|false

“There are simply too many notes, that’s all. Just cut a few and
it will be perfect!” – Emperor Joseph II to Mozart in Amadeus

2007 JavaOneSM Conference | Session TS-3723 41

Populate Data Models
Before Hooking up Views

• Post-processing of large data files can cause
thousands of events to fire in seconds

• Hook up GUI components after data is delivered
to all models
• Greatly speeds up responsiveness of GUI
• Allows user to monitor and cancel the request

2007 JavaOneSM Conference | Session TS-3723 42

Debugging Paint Slowdowns

Top is your friend!
• Iconify each view or cover a given view with

another window and watch CPU time
• Note how performance degrades over time
• Look for long lists of labels or icons even outside

of graphics clip region
• Look for events causing multiple repaints per

second
• Check whether slowdowns occur over remoted X

connections

2007 JavaOneSM Conference | Session TS-3723 43

Strategies for Handling Large Data
Generated by Long Sessions

• Cache older data to disk
• Cache manager approach using evictor pattern
• NetBeans approach for log files using NIO’s memory

mapped IO (See org\netbeans\core\output2 or
Tim Boudreau)

• Re-query server for data that has been purged

2007 JavaOneSM Conference | Session TS-3723 44

Example Evictor Cache Managementsd Interaction

oldCache

Storage

desiredCachecacheManagercachedList:Listconsumer

Not in Memory?

getRecord(int i)getRecord(int i)

getCacheForIndex(int i)getCacheForIndex(int i)

get(int i)get(int i)

evictOldestCacheevictOldestCache

getRecord(int i)getRecord(int i)

get(int i)get(int i)

moveStorageToDiskmoveStorageToDisk

**

loadStorageFromDiskloadStorageFromDisk

2007 JavaOneSM Conference | Session TS-3723 45

Use “JTable Style” Model/View for
Long Duration Dynamic Time Series Plots

• Synchronizing large sets between plotting package and
domain model can be problematic
• Impedance mismatches
• Error-prone
• Complicated
• Hard to get performance right

• Preferred approach now
• JTable/TableModel style approach – Performs well and simple to

track state
• Query original model for state info for each view based on the time

slice shown
• Custom Renderers can be used to “rubber stamp” data based on

state

2007 JavaOneSM Conference | Session TS-3723 46

Avoiding Null Pointer Hell

• Null Object Pattern
• Zero Length Arrays or Collections
return new ArrayList();
return new String[0];

• Do nothing object
return BLANK_AUDIO_RECORD;
return NoOpProxy;

• Throw an exception rather than returning null unless you
need high performance to force programmatic checking

• Immutable Objects with a builder

• Assert for null on arguments (Use aspects or annotations
to relieve coding tedium)

2007 JavaOneSM Conference | Session TS-3723 47

Addressing Slow Networks

• Multiple sockets allow interleaving of data and
command requests/responses

• Handle socket disconnects and reconnects
gracefully

• Gracefully handle timeouts (have timeouts!)
• Queue requests for data and return

asynchronously
• Cache data to local disk rather than refetching

from remote server

2007 JavaOneSM Conference | Session TS-3723 48

Rich Client Frameworks to Follow

• NetBeans Platform:
http://www.netbeans.org

• JavaDesktop, Fuse, SwingX
http://www.swinglabs.org

• Spring Rich Client
http://spring-rich-c.sourceforge.net/

• JSR 296: Swing Application Framework

• JUIPiter:
http://juipiter.sourceforge.net

• ReflectionBus:
http://sourceforge.net/projects/werx/

2007 JavaOneSM Conference | Session TS-3723 49

Summary
• Design patterns and lessons from enterprise architectures

should be leveraged within rich client applications

• Embed threading concerns down deep in your
communication framework to limit developer mistakes

• Carefully manage painting to increase perceived
performance

• Design code to scale to multiple developers using simple
type-safe APIs, null object pattern, reduced use of
mirrored indexed sets

• Single source of data – Render visible range of data
based on query of one model rather than synching data
structures between GUI components

• Try to use a mature GUI framework from the start to ease
growing pains

2007 JavaOneSM Conference | Session TS-3723 50

For More Information
• NetBeans – http://www.netbeans.org
• OpenMap – http://www.openmap.org
• Foxtrot website - http://foxtrot.sourceforge.net
• Gregor Hohpe & Bobby Woolf: Enterprise Integration

Patterns
• Brian Goetz: Simpler, Faster, Better: Concurrency

Utilities in JDKTM Software Version 5.0, JavaOne
2006, TS-4915

http://foxtrot.sourceforge.net/

2007 JavaOneSM Conference | Session TS-3723 | 51

Q&A
Rob Ratcliff

rob@futuretek.com

http://www.futuretek.com/ratcliff

mailto:rob@futuretek.com

	Designing Scalable High Performance Rich Clients from the Trenches
	Slide 2
	About FutureTek LLC
	Agenda
	NEWS Project Background
	Application Display Requirements
	Design Scalability Defined
	NEWS Initial Mockup Rapidly Generated Using NetBeans GUI Builder
	NEWS Networked Sensor Application
	DEMO
	Architecture Forensics
	I’m an Enterprise Unto Myself
	Where in the World is My Component?
	Dependency Injection before Injection was Cool
	SessionContext
	Session Life Cycle
	Domain Specific Data Model
	Singleton Example Type-Safe Preferences Management
	Singleton Tradeoffs
	BeanContext Architecture and Navigation
	Sample BeanContext Interfaces and Support Classes and Consumers
	Adding a Bean to the BeanContext
	BeanContext Tradeoffs
	Example Lookup Services
	Keep Asynchronous “Remote Calls” Simple Through Synchronicity
	Synchronous Pub/Sub Paradigm with Asynchronous Communications
	InvokeLater Insanity
	Inter-component Communications using Event Bus
	Using Event Bus for Inter-Component Communication Tradeoffs
	How does Foxtrot Work?
	Embedding Foxtrot into Remote Interface Proxy (Stub) using Dynamic Proxy
	Dynamic Proxy Continued
	Global Selection Notification
	Low Maintenance GUI Forms Higher Team Development Scalability
	Generating Forms Automatically with XML
	War Stories and Lessons Learned
	Post Mortem Analysis of Bug History
	Embarrassing Lockups
	Teach Testers about “kill –QUIT”
	Beating Death By a Thousand Paint Strokes
	Populate Data Models Before Hooking up Views
	Debugging Paint Slowdowns
	Strategies for Handling Large Data Generated by Long Sessions
	Example Evictor Cache Management
	Use “JTable Style” Model/View for Long Duration Dynamic Time Series Plots
	Avoiding Null Pointer Hell
	Addressing Slow Networks
	Rich Client Frameworks to Follow
	Summary
	For More Information
	Q&A

