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Session Goals

Learn practical design lessons from the 
development of a challenging networked 
rich client application

Design Lessons from the Trenches
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About FutureTek LLC
• Founded in 1995
• Projects and Technologies

• High performance rich networked Swing clients
• Distributed Multi-Disciplinary Optimization Framework 

for Boeing, MDOPT 
• CORBA integration
• Database applications
• Java based web projects

• On-line ordering, radio show scheduling, call center, inventory 
management

• Multi-player trivia game applet

• Co-founded Austin Java Users Group
http://www.austinjug.org
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Agenda

• Overview of the “NEWS” Project
• Architecture Overview
• Comparison and Contrast of Design 

Solutions
• War Stories and Lessons Learned
• Summary

Changed
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NEWS Project Background

• Design GUI to control a network of sensors and display 
the resulting engineering data in near real time

• Overall Design Approach
• Mockup screens using NetBeans to allow customer to 

interact using mock data
• Java Swing Toolkit for GUI (rather than AWT)
• Stateful high-performance binary protocol and 

asynchronous messaging
• Simple command+name/value pair control language
• Socket  per session mimicking a distributed service 

factory (made demultiplexing of events easier too)
• Develop mock server to accelerate development
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Application Display Requirements

• Support streaming data (positions and speed, 
signal, status, audio etc.)

• Display time-varying positions and other sensor-
related data on a world map

• Display data in time order
• Synchronize all views in time
• Synchronize selection in all views
• Minimal mouse clicks to access functions
• Display all relevant data up front
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Design Scalability Defined

• Feature
– GUI Layout

• Toolbar space
• Menu Structure
• Screen real estate
• Feature Navigation

– Hooking in new components
– Leveraging what others have 

done
• Duration  (long execution runs 

and multiple sessions)
– Memory Performance
– CPU Performance
– GUI Responsiveness

• Development
– Practice type safety first (avoid 

string based paradigms)
• Ease editing through IDE 

auto-completion
• Ease refactoring
• Ease debugging through 

compile-time error 
checking

– GUI-builder and XML driven 
screens for easier long term 
maintenance

• Deployment 
– Easy configuration as number 

of settings increase
– Simple software update
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NEWS Initial Mockup Rapidly Generated 
Using NetBeans GUI Builder
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NEWS Networked Sensor Application
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DEMO
NEWS Intruder Detection Scenario
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Architecture Forensics

Network Layer Reader Writer Queue

Event Generation
& Parser Layer UFF SNLNMSG

GUI Visual Layer

Toolbars

Dialogs

Data Plots

Information Panels

Menus

Application Layer

TM Proxy Session ModelEvent BusQueues

Plot Interaction Controls

Data Selection Widgets

Plot Models

Tables

Component LookupPreferences
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I’m an Enterprise Unto Myself

Large GUI applications share many of the problems 
that distributed component architectures have

• Complex threading issues
• Lookup and hookup with “distant” components 

and models
• Asynchronous notification
• Transactions
• Persistence
• Data mappings and graph navigation

Changed



2007 JavaOneSM Conference   |   Session  TS-3723 13

Where in the World is My Component?

• Dependency Injection (Constructor or Setter)
• Singleton
• BeanContext
• Lookup Services
• Event Bus
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Dependency Injection before Injection was 
Cool
SessionContext idea borrowed from the earlier EJB specification
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SessionContext

• Creation
• Create Queues and Worker Threads
• Data Models
• Register data models with event bus
• Component listener hookup

• Destruction
• Thread shutdown
• Socket disconnect
• Component listener removal (to avoid memory leaks)

Life Cycle Management
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Session Life Cycle
sd Interaction

Client :SessionManager

s:SessionContext

p:TMProxy

bus:EventBus

n:Network

component:Sessionable

createSessionContext()createSessionContext()

createSessionContext()createSessionContext()

getInstance()getInstance()

**

disconnect()disconnect()

**

**

**

clearSessionContext()clearSessionContext()

removeModelListeners()removeModelListeners()

addModelListeners()addModelListeners()

setSessionContext()setSessionContext()
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Domain Specific Data Model

Usage: 

sessionContext.getNetwork()

.getLocalSensor()

.getPvtModel().getRecords();

Advantages

• Easy to navigate

• Domain specific data rules and state

Disadvantages

• More coupling due to dependencies

• Harder to test

Sorted tree map 
used to keep 
records in time 
order
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Singleton Example 
Type-Safe Preferences Management 

• Goal: Make preferences easily accessible to 
programmer without having to know magic strings

• Type safe façade class 
to access properties for 
a given module

• Use one property file

Note: Java Beans BeanInfo framework 
very useful for dynamically setting and 
serializing property values and auto-
generating property sheets
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Singleton Tradeoffs

Advantages
• Simple concept
• Globally accessible
• Ensures one 

instance

Disadvantages
• Leads to tighter 

coupling
• Ensures one 

instance
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BeanContext Architecture 
and Navigation

• Based on composite design pattern

Note: OpenMap framework built on java.beans.BeanContext 
infrastructure



2007 JavaOneSM Conference   |   Session  TS-3723 21

Sample BeanContext Interfaces and 
Support Classes and Consumers
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Adding a Bean to the BeanContext

Note: The OpenMap framework delegates all added context change 
notifications to the findAndInit(Obect o) to reduce the number of user-
implemented methods

Changed
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BeanContext Tradeoffs

Advantages
• Flexible composite 

structure
• Part of the standard 

JDK distribution
• Allowed easy 

integration with the 
OpenMap framework

Disadvantages
• Rather large set of 

interfaces and 
methods to implement

• A bit complicated
• Custom code required 

to support hierarchical 
notifications and 
searches
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Example Lookup Services

• NetBeans style Lookup
• (ChatProxy)Lookup.lookup(ChatProxy.class);
• (ChatProxy)Lookup.lookup(

new Template(ChatProxy.class, “mychat”));

• JNDI Lookup
• (ChatProxy)context.lookup(objectName);
• (ChatProxy)directory.search(contextName, 

attributes)
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Keep Asynchronous “Remote Calls” 
Simple Through Synchronicity

• Listener and correlation ID pattern to block for 
response when protocol is asynchronous or 
message based

• Foxtrot keeps GUI lively (Concurrent worker vs. 
Single worker)

• Deliver events in correct thread
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Synchronous Pub/Sub Paradigm with 
Asynchronous Communications

How about embedding 
JMS into a rich client?
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InvokeLater Insanity
“Doing the same thing over and over and expecting 

different results” – Ben Franklin

• Expecting developers to consistently use 
SwingUtilities.invokeLater() is wishful thinking at 
best

• Framework should take care of this automatically
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Inter-component Communications 
using Event Bus

• Listeners implementing SwingListener interface 
receive delivered events on EDT

• Listeners register for Swing events by type
• Events pushed onto bus

Changed
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Using Event Bus for Inter-Component 
Communication Tradeoffs

Advantages
• Supports multiple 

producers of a given 
event type

• No knowledge of 
producer required

• Can hook up directly 
with producer via 
“source” of event

Disadvantages
• Proliferation of 

event types
• Slower performance 

than direct method 
calls

• Demultiplex desired 
producer

Changed
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How does Foxtrot Work?
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Embedding Foxtrot into Remote Interface 
Proxy (Stub) using Dynamic Proxy

ChatProxyHandler chatProxyHandler = 

new ChatProxyHandler(chatProxyDelegate);

ChatCommand proxy = (ChatCommand) 
Proxy.newProxyInstance(loader, 
   new Class[] { ChatCommand.class },               
         chatProxyHandler);
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Dynamic Proxy Continued

class ChatProxyHandler implements InvocationHandler {
  public Object invoke(Object proxy, 
    final Method method, final Object[] args) {
     this.fireBusy(true); Object value = null;
     try {

if (!SwingUtilities.isEventDispatchThread()) {
 value = method.invoke(delegate, args);
} else {
 value = ConcurrentWorker.post( new Task() {

public Object run() throws Exception {
return method.invoke(delegate, args);

}
 });
}

  } finally {
 this.fireBusy(false);

  }
return value;

}
}
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• Desired Behavior:
• In a time-based simulation, all views need to be time synchronized 

to avoid confusion
• Selected points in one view may need to cause selection of points 

in other views

• Causes
• Current Timestamp changes 
• User selects data that may or may not cause a timestamp change

• Solutions
• Spoke and hub
• Point-to-point

Global Selection Notification
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Low Maintenance GUI Forms
Higher Team Development Scalability

• GUI builder generated forms like NetBeans’ 
Matisse

• Forms generated from XML data descriptions

• Forms generated from Java Beans and BeanInfo

Changed
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Generating Forms Automatically 
with XML

<config>
<boolean name="enabled">

<value>false</value>
</boolean>
<long name="expiration">

<value>5</value>
</long>
<string name="when_to_run">

<value>weekly</value>
</string>
<string name="day_of_week">

<value>Sunday</value>
</string>
<string name="time_to_run">

<value>2359</value>
</string>
<boolean name="delete_file">

<value>true</value>
</boolean>

</config>

<configDescriptor>
<stringDescriptor name="day_of_week" privilege="operator" label="Day of 
week" recommended="Sunday">

<description>If weekly, sets days of week</description>
<options>

<option value="Sunday" label="Sunday"/>
<option value="Monday" label="Monday"/>
<option value="Tuesday" label="Tuesday"/>
<option value="Wednesday" label="Wednesday"/>
<option value="Thursday" label="Thursday"/>
<option value="Friday" label="Friday"/>
<option value="Saturday" label="Saturday"/>

</options>
</stringDescriptor>
<booleanDescriptor name="delete_file" privilege="operator" label="Enable 
auto-delete instead of auto-prune" recommended="false">

<description>Enables auto-delete instead of auto-prune (auto-prune removes 
only signal data) </description>
</booleanDescriptor>
...

</configDescriptor>
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War Stories and Lessons Learned

• GUI locked up!
• Start session dialog comes up blank!
• System won’t respond!
• GUI is hogging the CPU!
• GUI is hogging memory!
• GUI is hogging file descriptors!
• Sessions won’t start due to a null pointer 

exception!
• I’m seeing thousands of index out of bounds 

exceptions!
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Post Mortem Analysis of Bug History

• 1600 total bugs/enhancements over 4 years

• 323 P1 categorized bugs

• 67 GUI freezes/deadlock bugs

• 82 Null pointer exception bugs

• 68 Index out of bounds
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Embarrassing Lockups

• Primary Reasons
• Developer forgot to use InvokeLater leading to deadlock
• Synchronous calls to non-responsive server made in EDT 

• Remedies
• Check wrong thread with custom repaint manager
• Foxtrot – Concurrent or Single Worker model
• SwingWorker – Asynchronous solutions
• Don’t burden programmers, embed this in framework

• Dynamic Proxy and Chat application
• “SwingListeners” – Event distributor automatically deliver events 

to listener on EDT
• Practice DRY (Don’t Repeat Yourself)
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Teach Testers about “kill –QUIT”

• Deadlocks are hard to find, especially when they 
are intermittent

• Compile code with debugging symbols turned on
• Tell QA folks to use “kill –QUIT” during a lockup 

to produce a detailed stack trace
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Beating Death By a Thousand Paint Strokes

• Scheduled repaints

• Eliminate off screen label/icon/line paints

• Paint only “dirty” regions and only when “dirty”

• Use off-screen buffered images for static map layers like the 
coastlines of the world (See OpenMap’s BufferedImageRenderPolicy for an 
example)

• Use polyline and buffered images to avoid loading up X-server

• Watch out for slowdowns caused by semi-transparent colors when 
displayed over remote X

• Change Java2D command line parameters for optimal remote X 
operation, such as:

-Dsun.java2d.pmoffscreen=true|false

“There are simply too many notes, that’s all. Just cut a few and 
it will be perfect!” – Emperor Joseph II to Mozart in Amadeus
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Populate Data Models 
Before Hooking up Views

• Post-processing of large data files can cause 
thousands of events to fire in seconds

• Hook up GUI components after data is delivered 
to all models 
• Greatly speeds up responsiveness of GUI
• Allows user to monitor and cancel the request
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Debugging Paint Slowdowns

Top is your friend!
• Iconify each view or cover a given view with 

another window and watch CPU time
• Note how performance degrades over time
• Look for long lists of labels or icons even outside 

of graphics clip region
• Look for events causing multiple repaints per 

second
• Check whether slowdowns occur over remoted X 

connections
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Strategies for Handling Large Data 
Generated by Long Sessions

• Cache older data to disk 
• Cache manager approach using evictor pattern
• NetBeans approach for log files using NIO’s memory 

mapped IO (See org\netbeans\core\output2 or  
Tim Boudreau)

• Re-query server for data that has been purged
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Example Evictor Cache Managementsd Interaction

oldCache

Storage

desiredCachecacheManagercachedList:Listconsumer

Not in Memory?

getRecord(int i)getRecord(int i)

getCacheForIndex(int i)getCacheForIndex(int i)

get(int i)get(int i)

evictOldestCacheevictOldestCache

getRecord(int i)getRecord(int i)

get(int i)get(int i)

moveStorageToDiskmoveStorageToDisk

**

loadStorageFromDiskloadStorageFromDisk
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Use “JTable Style” Model/View for
Long Duration Dynamic Time Series Plots

• Synchronizing large sets between plotting package and 
domain model can be problematic
• Impedance mismatches
• Error-prone
• Complicated
• Hard to get performance right

• Preferred approach now 
• JTable/TableModel style approach – Performs well and simple to 

track state 
• Query original model for state info for each view based on the time 

slice shown
• Custom Renderers can be used to “rubber stamp” data based on 

state
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Avoiding Null Pointer Hell

• Null Object Pattern
• Zero Length Arrays or Collections
return new ArrayList();
return new String[0];

• Do nothing object
return BLANK_AUDIO_RECORD;
return NoOpProxy;

• Throw an exception rather than returning null unless you 
need high performance to force programmatic checking

• Immutable Objects with a builder

• Assert for null on arguments (Use aspects or annotations 
to relieve coding tedium)
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Addressing Slow Networks

• Multiple sockets allow interleaving of data and 
command requests/responses

• Handle socket disconnects and reconnects 
gracefully

• Gracefully handle timeouts (have timeouts!)
• Queue requests for data and return 

asynchronously
• Cache data to local disk rather than refetching 

from remote server
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Rich Client Frameworks to Follow 

• NetBeans Platform:
http://www.netbeans.org

• JavaDesktop, Fuse, SwingX
http://www.swinglabs.org

• Spring Rich Client
http://spring-rich-c.sourceforge.net/

• JSR 296: Swing Application Framework 

• JUIPiter: 
http://juipiter.sourceforge.net

• ReflectionBus: 
http://sourceforge.net/projects/werx/
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Summary
• Design patterns and lessons from enterprise architectures 

should be leveraged within rich client applications

• Embed threading concerns down deep in your 
communication framework to limit developer mistakes

• Carefully manage painting to increase perceived 
performance

• Design code to scale to multiple developers using simple 
type-safe APIs, null object pattern, reduced use of 
mirrored indexed sets

• Single source of data – Render visible range of data 
based on query of one model rather than synching data 
structures between GUI components

• Try to use a mature GUI framework from the start to ease 
growing pains
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For More Information
• NetBeans – http://www.netbeans.org
• OpenMap – http://www.openmap.org
• Foxtrot website - http://foxtrot.sourceforge.net
• Gregor Hohpe & Bobby Woolf: Enterprise Integration 

Patterns
• Brian Goetz: Simpler, Faster, Better: Concurrency 

Utilities in JDKTM Software Version 5.0, JavaOne 
2006, TS-4915

http://foxtrot.sourceforge.net/
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Q&A
Rob Ratcliff

rob@futuretek.com

http://www.futuretek.com/ratcliff

mailto:rob@futuretek.com
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